History of Dictionary Searches using Damerau-Levenshtein distance in T-SQL
Fuzzy-string Searches
(up to 100 most recent)
for
"probability"
| Num | Started At (CA time) | Searched Word | Change Limit | Words Checked | Words Matched | Seconds | Words Per Sec |
| 456 | 2025-10-26 21:30:03 | probability | 2 | 86808 | 8 | 2.500 | 34723.2 |
| 455 | 2025-10-22 04:10:13 | probability | 1 | 49908 | 1 | 1.330 | 37524.8 |
| 454 | 2025-10-21 18:54:39 | probability | 1 | 49908 | 1 | 1.690 | 29531.4 |
| 453 | 2025-10-16 05:59:38 | probability | 4 | 148819 | 152 | 8.170 | 18215.3 |
| 452 | 2025-10-15 15:55:50 | probability | 1 | 49908 | 1 | 0.860 | 58032.6 |
| 451 | 2025-09-28 11:47:25 | probability | 1 | 49908 | 1 | 0.860 | 58032.6 |
| 450 | 2025-09-14 23:30:52 | probability | 4 | 148819 | 152 | 8.530 | 17446.5 |
| 449 | 2025-09-10 20:18:32 | probability | 2 | 86808 | 8 | 2.516 | 34502.4 |
| 448 | 2025-09-08 01:07:00 | probability | 3 | 121633 | 40 | 4.983 | 24409.6 |
| 447 | 2025-09-02 19:46:31 | probability | 1 | 49908 | 1 | 0.780 | 63984.6 |
| 446 | 2025-08-31 14:47:35 | probability | 4 | 148819 | 152 | 11.626 | 12800.5 |
| 445 | 2025-08-31 10:02:03 | probability | 1 | 49908 | 1 | 0.796 | 62698.5 |
| 444 | 2025-08-28 22:10:36 | probability | 1 | 49908 | 1 | 0.780 | 63984.6 |
| 443 | 2025-08-26 13:16:05 | probability | 4 | 148819 | 152 | 9.673 | 15385.0 |
| 442 | 2025-08-25 15:26:59 | probability | 4 | 148819 | 152 | 40.520 | 3672.7 |
| 441 | 2025-08-24 12:04:03 | probability | 4 | 148819 | 152 | 51.346 | 2898.4 |
| 440 | 2025-08-24 07:09:02 | probability | 3 | 121633 | 40 | 12.703 | 9575.1 |
| 439 | 2025-08-23 23:18:21 | probability | 2 | 86808 | 8 | 14.500 | 5986.8 |
| 438 | 2025-08-22 17:34:38 | probability | 1 | 49908 | 1 | 2.000 | 24954.0 |
| 437 | 2025-08-03 23:36:51 | probability | 1 | 49908 | 1 | 2.190 | 22789.0 |
| 436 | 2025-07-31 21:53:15 | probability | 1 | 49908 | 1 | 3.046 | 16384.8 |
| 435 | 2025-07-14 02:42:12 | probability | 1 | 49908 | 1 | 5.123 | 9741.9 |
| 434 | 2025-07-05 13:23:52 | probability | 4 | 148819 | 152 | 37.796 | 3937.4 |
| 433 | 2025-07-04 13:58:54 | probability | 2 | 86808 | 8 | 6.343 | 13685.6 |
| 432 | 2025-07-03 21:18:09 | probability | 4 | 148819 | 152 | 55.986 | 2658.1 |
| 431 | 2025-07-03 15:23:31 | probability | 1 | 49908 | 1 | 4.110 | 12143.1 |
| 430 | 2025-07-02 02:17:53 | probability | 4 | 148819 | 152 | 49.173 | 3026.4 |
| 429 | 2025-07-02 02:18:19 | probability | 1 | 49908 | 1 | 6.453 | 7734.1 |
| 428 | 2025-07-01 23:39:38 | probability | 1 | 49908 | 1 | 3.813 | 13088.9 |
| 427 | 2025-06-30 14:28:53 | probability | 1 | 49908 | 1 | 3.266 | 15281.1 |
| 426 | 2025-06-29 20:38:51 | probability | 1 | 49908 | 1 | 2.050 | 24345.4 |
| 425 | 2025-06-29 15:37:26 | probability | 1 | 49908 | 1 | 4.376 | 11404.9 |
| 424 | 2025-06-26 20:45:32 | probability | 1 | 49908 | 1 | 3.346 | 14915.7 |
| 423 | 2025-06-26 00:43:31 | probability | 1 | 49908 | 1 | 4.546 | 10978.4 |
| 422 | 2025-06-23 23:19:07 | probability | 1 | 49908 | 1 | 6.406 | 7790.8 |
| 421 | 2025-06-16 08:24:28 | probability | 1 | 49908 | 1 | 2.360 | 21147.5 |
| 420 | 2025-06-15 16:32:51 | probability | 1 | 49908 | 1 | 2.046 | 24393.0 |
| 419 | 2025-06-15 13:53:07 | probability | 3 | 121633 | 40 | 4.640 | 26214.0 |
| 418 | 2025-06-14 13:35:18 | probability | 3 | 121633 | 40 | 26.563 | 4579.0 |
| 417 | 2025-06-10 17:43:40 | probability | 1 | 49908 | 1 | 4.143 | 12046.3 |
| 416 | 2025-06-08 15:28:27 | probability | 3 | 121633 | 40 | 30.203 | 4027.2 |
| 415 | 2025-06-08 11:32:19 | probability | 2 | 86808 | 8 | 10.530 | 8243.9 |
| 414 | 2025-06-05 17:35:13 | probability | 2 | 86808 | 8 | 4.060 | 21381.3 |
| 413 | 2025-06-03 19:48:29 | probability | 1 | 49908 | 1 | 0.906 | 55086.1 |
| 412 | 2025-06-02 12:03:48 | probability | 4 | 148819 | 152 | 53.193 | 2797.7 |
| 411 | 2025-06-01 14:18:14 | probability | 4 | 148819 | 152 | 51.160 | 2908.9 |
| 410 | 2025-06-01 05:28:41 | probability | 1 | 49908 | 1 | 4.190 | 11911.2 |
| 409 | 2025-05-31 16:58:26 | probability | 4 | 148819 | 152 | 44.656 | 3332.6 |
| 408 | 2025-05-31 12:21:42 | probability | 4 | 148819 | 152 | 57.190 | 2602.2 |
| 407 | 2025-05-29 13:55:59 | probability | 1 | 49908 | 1 | 3.953 | 12625.3 |
| 406 | 2025-05-28 11:31:55 | probability | 1 | 49908 | 1 | 0.876 | 56972.6 |
| 405 | 2025-05-28 01:23:17 | probability | 4 | 148819 | 152 | 14.656 | 10154.1 |
| 404 | 2025-05-26 21:36:07 | probability | 1 | 49908 | 1 | 4.266 | 11699.0 |
| 403 | 2025-05-15 13:45:42 | probability | 1 | 49908 | 1 | 0.796 | 62698.5 |
| 402 | 2025-05-13 11:20:07 | probability | 2 | 86808 | 8 | 11.720 | 7406.8 |
| 401 | 2025-05-12 08:42:51 | probability | 1 | 49908 | 1 | 3.656 | 13651.0 |
| 400 | 2025-05-10 15:46:31 | probability | 3 | 121633 | 40 | 16.566 | 7342.3 |
| 399 | 2025-05-10 13:47:48 | probability | 2 | 86808 | 8 | 17.970 | 4830.7 |
| 398 | 2025-05-09 13:07:52 | probability | 1 | 49908 | 1 | 0.890 | 56076.4 |
| 397 | 2025-05-09 00:53:57 | probability | 1 | 49908 | 1 | 0.923 | 54071.5 |
| 396 | 2025-05-07 06:30:55 | probability | 1 | 49908 | 1 | 0.893 | 55888.0 |
| 395 | 2025-05-06 22:37:43 | probability | 1 | 49908 | 1 | 0.940 | 53093.6 |
| 394 | 2025-04-28 16:57:24 | probability | 4 | 148819 | 152 | 44.970 | 3309.3 |
| 393 | 2025-04-28 13:49:04 | probability | 1 | 49908 | 1 | 3.326 | 15005.4 |
| 392 | 2025-04-26 15:01:58 | probability | 3 | 121633 | 40 | 27.470 | 4427.8 |
| 391 | 2025-04-24 20:27:19 | probability | 1 | 49908 | 1 | 0.813 | 61387.5 |
| 390 | 2025-04-24 10:48:57 | probability | 2 | 86808 | 8 | 15.720 | 5522.1 |
| 389 | 2025-04-23 13:09:18 | probability | 4 | 148819 | 152 | 61.423 | 2422.9 |
| 388 | 2025-04-21 12:17:07 | probability | 2 | 86808 | 8 | 9.720 | 8930.9 |
| 387 | 2025-04-20 21:25:03 | probability | 4 | 148819 | 152 | 49.300 | 3018.6 |
| 386 | 2025-04-19 22:22:08 | probability | 1 | 49908 | 1 | 0.953 | 52369.4 |
| 385 | 2025-04-18 14:45:30 | probability | 4 | 148819 | 152 | 39.426 | 3774.6 |
| 384 | 2025-04-18 11:08:33 | probability | 4 | 148819 | 152 | 33.423 | 4452.6 |
| 383 | 2025-04-16 14:26:45 | probability | 4 | 148819 | 152 | 55.580 | 2677.6 |
| 382 | 2025-04-11 08:19:59 | probability | 1 | 49908 | 1 | 4.266 | 11699.0 |
| 381 | 2025-04-06 00:11:47 | probability | 1 | 49908 | 1 | 5.686 | 8777.3 |
| 380 | 2025-03-23 17:14:29 | probability | 3 | 121633 | 40 | 19.750 | 6158.6 |
| 379 | 2025-03-23 15:25:20 | probability | 3 | 121633 | 40 | 29.093 | 4180.8 |
| 378 | 2025-03-23 09:39:15 | probability | 3 | 121633 | 40 | 32.893 | 3697.8 |
| 377 | 2025-03-22 16:18:37 | probability | 1 | 49908 | 1 | 2.203 | 22654.6 |
| 376 | 2025-03-21 17:24:20 | probability | 4 | 148819 | 152 | 37.860 | 3930.8 |
| 375 | 2025-03-21 16:59:49 | probability | 3 | 121633 | 40 | 24.973 | 4870.6 |
| 374 | 2025-03-19 20:52:33 | probability | 1 | 49908 | 1 | 1.766 | 28260.5 |
| 373 | 2025-03-16 15:34:51 | probability | 1 | 49908 | 1 | 2.280 | 21889.5 |
| 372 | 2025-03-07 07:46:13 | probability | 1 | 49908 | 1 | 3.780 | 13203.2 |
| 371 | 2025-03-02 04:34:28 | probability | 1 | 49908 | 1 | 6.220 | 8023.8 |
| 370 | 2025-02-19 16:09:13 | probability | 2 | 86808 | 8 | 11.860 | 7319.4 |
| 369 | 2025-02-17 18:45:32 | probability | 2 | 86808 | 8 | 13.626 | 6370.8 |
| 368 | 2025-02-17 18:44:51 | probability | 1 | 49908 | 1 | 4.186 | 11922.6 |
| 367 | 2025-02-06 20:09:52 | probability | 3 | 121633 | 40 | 25.130 | 4840.2 |
| 366 | 2025-02-06 20:09:52 | probability | 2 | 86808 | 8 | 10.626 | 8169.4 |
| 365 | 2025-02-05 08:35:47 | probability | 3 | 121633 | 40 | 36.923 | 3294.2 |
| 364 | 2025-01-30 10:48:10 | probability | 1 | 49908 | 1 | 3.606 | 13840.3 |
| 363 | 2025-01-30 10:45:53 | probability | 4 | 148819 | 152 | 50.500 | 2946.9 |
| 362 | 2025-01-29 12:18:25 | probability | 1 | 49908 | 1 | 3.750 | 13308.8 |
| 361 | 2025-01-24 06:29:15 | probability | 4 | 148819 | 152 | 45.940 | 3239.4 |
| 360 | 2025-01-23 10:55:08 | probability | 4 | 148819 | 152 | 29.863 | 4983.4 |
| 359 | 2025-01-23 03:58:05 | probability | 4 | 148819 | 152 | 32.470 | 4583.3 |
| 358 | 2025-01-23 03:58:06 | probability | 3 | 121633 | 40 | 27.126 | 4484.0 |
| 357 | 2025-01-23 03:58:18 | probability | 2 | 86808 | 8 | 11.876 | 7309.5 |